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We investigate iterative methods for solving linear systems aris-
ing from the kinetic theory and providing transpon coefficients of
dilute polyatomic gas mixtures. These finear systems are obtained
in their naturally constrained, singular, and symmetric form, using
the formalism of Waldmann and Trilbenbacher. The transport coef-
ficients associated with the systems obtained by Monchick, Yun,
and Mason are also recovered, if two misprints ate corrected in the
work of these authors. Using the recent theory of Ern and Giovan-
gigli, all the transport coefficients are expressed as convergent se-
ries. By truncating these series, new, accurate, approximate expres-
sions are obtained for all the transport coefficients. Finally, the
computational efficiency of the present transport algorithms in
muklticomponent flow applications is illustrated with several numeri-
cal experiments. @ 1995 Academic Press, ine.

1. INTRODUCTION

In gaseous multicomponent flow calculations, transport prop-
erty evaluation is an important and often time-consuming task.
Indeed, the governing equations for these tlows contain the
transport fluxes, i.e., the pressure tensor I1, the species diffusion
velocities V;, for { € &, and the heat flux vector ¢. Using the
kinetic theory of dilute polyatomic gas mixtures [ 1], these fluxes
may be written to a first approximation in the Enskog—Chapman
expansion in terms of various transport coefficients, i.e., the
volume viscosity k, the shear viscosity %, the diffusion matrix
D = (Dy); jev. the thermal diffusion vector & = (6)ey, and the
partial thermal conductivity A'. More specifically, we have

Il =pl = (k = §q}V - 0)] = 9Vv + (Vo)),  (L1])
- ¥ Dd— 8V 1ogT, i€, (1.2)
JEY
g =2 phY\V. = NVT~p> 8d, (1.3)
i) ey

where p is the thermodynamic pressure, / the identity matrix,
v ihe mass averaged flow velocity, 4; the diffusion driving force

of the ith species, T the absolute temperature, & = [1, ] the
set of species indices, # the number of species, p the density,
A, the enthalpy per unit mass of the ith species, and Y, the mass
fraction of the ith species. The vectors d; incorporate the effects
of various state variable gradients and external forces and are
given by

d{-:VX,-I’(X—Y)— pEY,Y{b by, iEY, (14)

L]

where X, denotes the mole fraction of the ith species and &, is
the external force per unit mass on the ith species. Alternatively,
the diffusion velocities and the heat flux vector may be written
in terms of the thermal diffusion ratios ¥ = (y)icy and the
thermal conductivity A as follows [1]

= 3 Dy(d;+ xV log T, (1.5)
JEY
q =2 phYV,— AT +p >, xVi. (1.6)
iEd ey

For a reactive mixture in the tempered reaction regime, the
transport fluxes due te macroscopic variable gradients are also
given by (1.1)-(1.6) [2].

It follows from the expressions (1.1)-(1.6) that detailed mod-
eling of a polyatomic gas mixture requires the evaloation of
its transport coefficients. These coefficients, in turn, are func-
tions of the state variables p, T, and ¥,, ..., Y,. The evaluation
of the transport coefficients, however, requires solving linear
systems [1, 2]. Since the size of these systems can be relatively
large and since transport properties have to be evaluated at
each computational cell in space and time, transport property
evaluation by direct numerical inversions [3-7} may become
computationally expensive. As a consequence, the use of itera-
tive techniques constitutes an interesting and appealing alterna-
tive. Moreover, analytic approximate expressions for the trans-
port coefficients can then be obtained by truncation.
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For the shear viscosity and the thermal conductivity of
monatomic gas mixtures, the associated linear systems are natu-
rally nonsingular, and iterative algorithms have been implicitly
considered in [8—10]. For diffusion velocities, which involve
the solution of a constrained singular system, iterative schemes
have been introduced in [11]. In order to select the proper
diffusion velocities, a corrector term needs to be added after
convergence [11, 12]. The convergence of the Jones—Oran—
Boris algorithm has been proven rigorously by Giovangigli
[13] who also established that the corresponding iteration matrix
has a spectral radius unity. Additional algorithms for which the
iteration matrix has a spectral radius strictly lower than unity are
also introduced in [13] for multicomponent diffusion matrices.
These algorithms are obtained from the theory of iterative meth-
ods for singular systems and require the application of a projec-
tion matrix at each step

A systematic development of a mathematical and numerical
theory of iterative algorithms for evaluating all the transport
coefficients of dilute polyatomic gas mixtures is given in [2].
Various iterative schemes are proven to be convergent by using
the theory of iterative metheds for constrained singular linear
systems and symmetric positive semi-definite matrices [2].
These convergence results strongly rely on the mathematical
properties of the Boitzmann equation and the structure of the
variational space selected for the species perturbed distribution
functions. As aresult, all the transport coefficients are expressed
as convergent series, for which all the partial sums satisfy the
mathematical properties that are important from a thermody-
namic viewpoint, i.e., symmetry, mass conservation, and posi-
tive entropy production. Rigorously derived, analytic, approxi-
mate expressions are then obtained for all the transport
coefficients by truncating convergent iterative methods.

The transport linear systems, i.e., the linear systems associ-
ated with the evaluation of all the transport properties, are
obtained in [2] in their naturally constrained, singular, and
symmelric form, using the formalism of Waldmann and Triiben-
bacher [1]. On the contrary, Monchick, Yun. and Mason [14]
have systematically eliminated the singularities arising in the
linear systems, by explicitly using the linear constraints and
zeroing the diagonal coefficients of the system matrices, follow-
ing a procedure introduced by Curtiss and Hirschfelder [8, 15].
This formulation of the linear systems presents three important
drawbacks, First, the authors have obtained in {2] symmetric
positive definite forms of the singular systems which can be
inverted at a lower computational cost than that required for
nonsymmetric systems. Furthermore, the original constrained
singular symmetric systems are preferable for iterative tech-
niques. Finally, the original systems have simpler analytic ex-
pressions so that they are better suited for analytic approxima-
tions of the transport coefficients. Note also that symmetric
diffusion coefficients, which are formally compatible with On-
sager reciprocal relations, have been used in [1, 2, 13, 16-19]
at variance with [8, 14, 15}, where this symmetry was artificially
destroyed [20]. Since Waldmann and Tritbenbacher [1] only
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derived a formal theory, a calculation of the system coefficients
was needed and has been performed in [2] for all the transport
linear systems. In addition, two misprints have been identified
in the paper of Monchick, Yun, and Mason.

The purpose of this paper is now to derive accurate analytic
approximations for all the transport coefficients and to investi-
gate the associated computational costs in multicomponent flow
calculations. Using the theory of [2] as a starting point, various
strategies designed to optimize transport property evaluation
are described. Truncation of convergent series then results from
a compromise between computational cost and accuracy of the
corresponding expressions of the transport coefficients. The
theoretical basis for the transport algorithms used in this paper
is briefly presented in Sections 2 and 3. In Section 2 we describe
the transport linear systems and summarize their mathematical
properties. Various convergence theorems are stated in Section
3 and we refer to [2] for their proof. Finally, practical, accurate
approximations for all the transport coefficients are derived in
Section 4. Numerical experiments are performed illustrating
the high convergence rate and the low computational cost of
the present algorithms for typical multicomponent flow applica-
tions.

2. TRANSPORT LINEAR SYSTEMS

2.1. Notation

The transport linear systems are indexed with the superscript
w, where u = 7 for the shear viscosity, 4 = & for the volume
viscosity, w = D;, k € ¥, for the diffusion matrix, w = A’ for
the partial thermal conductivity and the thermal diffusion vec-
tor, and w = A for the thermal conductivity and the thermal
diffusion ratios. The transport linear systems constdered in this
paper take on either the nonsingular form

Gar = 3, 2.
where G denotes the system matrix and 8*, the right-hand side,
or the constrained singular form

Go* = 3+,

(2.2)
{6, a*y = 0,
where § denotes the constraint vector and ¢, } the scalar product.
Both systems are typically asscciated with the evaluation of
the transport coefficient u = (a*, B*), where 8* is a given
vector.

The transport linear systems are derived from a variational
procedure by considering polynomial expansions of the species
perturbed distribution functions. The finite dimensional func-
tional space used in the variational procedure is denoted by
A+ = span{&®, (r, k) € D}, where &%, (r, k) € B, are basis
functions. Here, %* is the set of basis function indices which
has @ elements. In the notation (r, k), the index k refers to
the species and the index r refers to the function type that is
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considered. The basis functions £ are generally expressed in
function of the Laguerre—Sonine polynomials and the Wang
Chang and Uhlenbeck polynomials in the internal energy, thus
accounting for the polyatomic nature of the molecules [1].
For each transport coefficient, various transport linear sys-
tems can be considered, corresponding to different choices for
the variational space s*. The standard choice yields the systems
presented in Table I, where p denotes the number of polyatomic
species in the mixture. New transport linear systems associated
with the use of variational spaces of lower dimension [2, 21,
22] are briefly discussed in Appendix A, These reduced systems
yield new approximations for the transport coefficients which
are generally within a few percentages of accuracy of the trans-
port coefficients obtained with the standard systems [2]. How-
ever, since the reduced systems are of smaller size, they consti-
tute in some cases a computationally interesting alternative to
the standard systems [2, 22]. In Table I, the first column contains
the system Go* = 3%, the second, the size of the system w;
the third, the constraint (%4, o) = 0; and the last, the expression
for the associated transport coefficient p. For the thermal diffu-
sion ratios, the matrix [L™'"°, L%']is an r X {n + p) rectangular
matrix. The explicit expressions for all of the system matrices,
right-hand sides, and constraint vectors can be found in [2].

2.2. Block Structure of the Transport Linear Systems

The set $B*, ordered with the lexicographical order, can be
used as a natural indexing set. The components of any vector
x & R* are then denoted by x = {x}), hea. For x, y € R, the
scalar product {x, y) is given by (x, ¥) = 2, ;e xjy;. Further-
more, for x € R®, x # 0, we denote x* = {y € R°; {x, y) = O}

We denote by R the set of square matrices of size w, and
for G € R**, we write GG' the transpose of G and G =
(Giin isneae the coefficients of the matrix G. The nullspace
and range of G are denoted by N(G) and R(G), respectively,
and 1 is the identity matrix. For x € R®, diag{(x}).s)cz+) denotes
the diagonal matrix of [R** whose diagonal elements are xf, (r,
k) € B*, ordered as B*. For y, z € R®, the matrix y &) z is
given by y &) z = (3 Ziunca

For any function type r, we consider the subset ,C ¥ given
by ¥, = {k € ¥, (r, k) € B*} and we denote by w, the number
of elements of .. Note that &, may differ from & since some
types of functions do not appear for certain species. For in-
stance, functions in the internal energy must not be considered
for the monatomic species. The transport linear system matrix
G = (G8)payisnear in B¢ can then be partitioned into the blocks
G" = (Gihey ey, Of size w,* w,. For instance, for the volume
viscosity, the indexing set is given by %~ = {10} X ¥ U
{01} X P, where B is the set of polyatomic species indices,
and B~ has @ = n + p elements, Thus, the system matrix K
€ R**#%r admits the block-decomposition

K10
Koe

KlOOi

K= Kol ?

2.3)
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TABLE I
Standard Transport Linear Systems

System Size Constraint Evaluation
Hot = g0 H — 7 = {a" 8%
Ko = 3~ n+p H, ey =0 x = {a”, 8%
LaP = = 2n+p (Lo =0 Dy = {a™, B%
Lo = g¥ 2n+p (£, a"y =0 A= (pITHa, B

6=~ 5%

Aa? = g n+p — A= (Pt g9

x= [LODIO, anllaa

with K\mo =t Rn,n’ Kmm c Rn,p’ K’OH{} e Rp.n’ and Ko c

Ree,

The matrix diag(G) is simply the diagonal of G and, similarly,
diag(G™) is the diagonal of the rectangular block G%, i.e.,
(diag(G™)y = Gy, for (r, k), (s, I) € %4*. The matrix formed
by the diagonal of all the rectangular blocks G* of G plays a
fundamental role in the theory of iterative algorithms for the
transport linear systems [2]. It is denoted by db(G) € R“* and
is given by

db(G)i = Giidy,  (r k), (5, 1) € B, (2.4)
where &y is the Kronecker symbol. For instance, for the matrix
K, we have

diag(K'1%)  diag(K'*")

db(K) = ding(ko" |

diag( KO] l()) (2'5)

The matrix db{G) has very general structure properties that are
given in the next section.

2.3. Mathematical Structure of the Transport Linear Systems

The following fundamental results are obtained directly from
the Boltzmann equation and under very general assumptions
on the functional space $#* [2]. For the nonsingular systems,
the fellowing property holds

(G 1)} The matrices G, 2db(G) — G, and db{(G) are symmetric
positive definite for n = 1.

On the other hand, for the singutar systems, we have

(G2) For n = 1, the matrix  is symmetric positive semi-
definite and positive definite on %§*, its nullspace is a one-
dimensional space denoted by N(G) = R%, and we have (¢,
%) # 0 and (&, g = 0.

(G3) The matrix 24h(G) — G is symmetric positive
semi-definite for n = 1; this matrix is positive definite for
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n =3 forrn = 2 and ¥ = {l, 2}, its nullspace is given by
N(Q2dKG) — Gy = RY*, where ¥ = (— 1Y, (r, k) € B,
for n = 1, its nullspace is given by N(2db(G) — G) = RZ.

(G4) The matrix db(G) is symmetric positive semi-definite
for n = I, this matrix is positive definite for n = 2, whereas
its nullspace is given by N(db(G)) = R¥ forn = L.

We deduce from (G1) and (G2) that the transport linear
systems are well posed; i.e., they admit a unique sclution a®.
Furthermore, all the singular systems can also be cast into a
nonsingular form, since we have

o' =(G+a%®9" B,
p={G+a8®%)" B BH.

(2.6)

Indeed, we deduce from {(G2) that the matrix G + a6 & 4 is
symmetric positive definite for any real number a > 0 [2].
In addition, this matrix can be directly inverted at a lower
computational cost than that required for the nonsymmetric
forms obtained in [14], as further discussed in Section 4.1.
Note, however, that iterative methods applied to the matrix
G + &6 X § generally converge more slowly than those
applied to the original system matrix G |2].

2.4. The Singular Limit of Vanishing Mass Fractions

In practical applications, it is important, from a computational
viewpoint, to understand the mathematical and numerical be-
havior of the transport coefficients and the iterative algorithms
when some mass fractions become arbitrarily small. Zero mass
fractions lead to artificial singularities in the transport linear
systems which are eliminated by considering rescaled versions
of the original systems [2]. In particalar, provided the diffusion
matrix is replaced by the flux diffusion matrix Dy = YDy, k,
! € &, it is proven in [2] that all the transport coefficients are
smooth rational functions of the mass fractions and admit finite
limits when some mass f{ractions become arbitrarily small,
Moreover, the iterative algorithms obtained for positive mass
fractions can be rewritten in terms of a rescaled system matrix
that is still defined for nonnegative mass fractions [2]. For
positive mass fractions, all the iterative algorithms then yield
the same sequence of iterates, whether applied to the original
transport linear system or to the rescaled one. This result estab-
lishes rigorously the validity of a commeon practice in numerical
calculations, which consists in evaluating transport properties
of a given gas mixture by first adding to all the species mass
fractions a very small number, typically lower than the ma-
chine precision.

3. CONVERGENT ITERATIVE METHODS

3.1. Srandard Ierative Methods

We refer to |23-26] for an introduction to the solution of
singular consistent linear systems by standard iterative methods.
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For a matrix G € R, the decomposition G = M — Zisa
splitting if the matrix M is invertible. In order to solve the linear
systems (2. 1) or (2.2), this splitting induces the iterative scheme

X = T + M7 g7

i=0,1, .., (3.1)

where T = M™'Z. With the terminology of [24], the matrix
T € R*® is said to be convergent when lim,_. 7" exists, not
necessarily being zero. When 3* € R((G), one has then the
property that the iterative scheme (3.1) converges for any
xp € R* if and only if the matrix T is convergent.

In the following discussion we assume that the matrix T is
convergent. When the matrix G is nonsingular, we then have
p(T) < 1, where p(T) denotes the spectral radius of the matrix
T, so that lim,_,.. 7" = 0, and for any x, € R®, the iterates (3.1)
converge towards lim.,.. x;, = G™! §* = o*. This case is consid-
ered in Theorem 1 which applies to all the nonsingular transport
linear systems. On the other hand, when the matrix ( is singular,
the spectral radins of the iteration matrix T is unity, and the
limit of (3.1) then explicitly depends on the initial value x,
{24]. In order to obtain an iteration matrix of spectral radius
strictly lower than unity, the projected version of the iterative
scheme (3.1) is considered in Theorem 2 which applies to all
the singular transport linear systems. Projected iterative
schemes have been introduced in [13] when studying conver-
gent iterative methods for multicomponent diffusion coeffi-
cients, and systematically used in [2] for all the singular trans-
port linear systems. For a more mathematical discussion of
projected iterative algorithms, we also refer to |26].

THEOREM 1. Assume that (G1) holds and let M € R“* be
the matrix M = db(G) + diagl{onwea), where the coeffi-
cients o, (r, k) € B*, are nonnegative. Consider the splitting
G=M~—ZlaT=M'Z x € R and consider, for i = 0,
the iterates (3.1). Then the mairix T is convergent, p(T) < 1,
and we have the limits

lim x;, = o*,

-

lim (x;, B4 = p. G.2)

where o* is the unique solution of (2.1). Moreover, fori = 1,
the quantities

i-1
uh = <E M, Eﬂ>, (3.3)
i=0
are positive if B* = 8* # 0, and we have
lim Ml = <2 T/ M8, Eﬂ> = p. (3.4)
i =0
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THEOREM 2. Assume that (G2), (G3), and (G4) hold and
let M € RY* be the matrix M = db(G) + diag(i{oDimzanh
where the coefficients ai, (r, k) € ¥, are nonnegative and,
in the particular cases n = | or 2, such that o} = 0 for at
least one (r, k) € B* such that #; # 0. Consider the splitting
GC=M-ZleteT=M1Z andletalso P =1 — F X G/
(%, 6) be the obligue projector onto the hyperplane G" along
RY. Let x € R, yy = Px,, and consider, for i = 0, the iterates
(3.1) and also the iterates

yier = PTy; + PM™'3~. (3.5)

Then y; = Px; for all i = 0, the matrices T and PT are conver-
gent, p(T) = 1, p(PT) < 1, and we have the limits

limy, = P(l_im X)) = o¥,

o

tim (3., B = . (36)

where e is the unique solution of (2.2). Moreover, for i = 1,
the quantities

= <i (PT) PM~' P' 8", E“>, (3.7)

j=0

are positive if B* = B* # 0, and we have

l.im M”] = <i (PT')fPM" P 3, E}‘> = {. (3.8)

=0

Note that a key point in establishing that p(PT) < 1 is that

2db{G) — G is positive definite for n = 3, and this property
is deduced from the Boltzmann equation and the structure of
the variational space #¥, as stated in Section 2.3. Furthermore,
the projector P is needed for the convergence of the series (3.8)
since the seties E}w Ti M~" has no limit. In addition, since
p(T) = 1, the components of x, in N(G), according to the
decomposition N(G) @ R(/ — T) = R*, remain undamped in
(3.1). Such difficulties are avoided with the projected algorithm
involving the matrix PT of spectral radius strictly lower than
unity. .
Finally, we deduce from Theorems 1 and 2 that all the trans-
port coefficients can be expressed as convergent series. In the
case of projected series, the projector matrix ensures that the
partial sums satisfy the mathematical properties that are im-
portant from a thermodynamic viewpoint [2, 26]. In particular,
the diffusion matrix can be written as a projected convergent
series for which all the partial sums are symmetric, conserve
mass, and yield a positive entropy production on the physical
hyperplane of zero sum diffusion driving forces [2, 13, 26].
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3.2. Conjugate Gradient Methods

Recalling that within the Waldmann and Triibenbacher for-
malism [1, 2], the transport linear systems are symmetric, if is
also possible to use a conjugate gradient method for their solu-
tion. Therefore, we now consider conjugate gradient methods
for symmetric positive definite systems |27] and positive semi-
definite systems [28]. For the former systems, the convergence
theorem is omitted for brevity [2]. For the latter systems, the
projected conjugate gradient method, introduced in [2], is now
presenied in the following theorem, Note also that the use of the
matrix dh(G) in the preconditioner arises from the theoretical
results of Section 2.3,

THEOREM 3. Assume that (G2), (G3), and (G4) hold and
let M € R** be the matrix M = db{(G) + diag({oh) pear) OF
M = diag(G) + diag(( oD near). where the coefficients o, (r,
k) € BB*, are nonnegative and, in the particular case n = 1,
such that o} > 0 for at least one (r, k) € B* such that F; #
0. Let also P = 1 — % X G/(%, ‘) be the obligue projector
onto the hyperplane 4 along RE. Let x, € R,
Yo = Pxo, rg = f8* — Gxo, py = 0, & =0, and consider, for i
= 1, the iterates

p=M'ro + & pi,
&= {ro, MK ps, G,

X, = Xy T Lpis

3.9
Yo = yior T &Fpis (
r=rio — LGp,

&={(r, M‘lr,-)/(r[_l,M“'r,_l}.

Then y; = Px;for all | = U, the sequence of iterates y, converges
fowards the unique solution of (2.2) in at most w steps, and
the quantities

i = (v, BH), (3.10)

converge towards u = {a*, B in at most w steps. Furthermore,
ifxo = 0and B* = B* # 0, we have ' > 0 for all i = 1.

4. PRACTICAL, ACCURATE APPROXIMATIONS FOR THE
TRANSPORT COEFFICIENTS

In this section we derive accurate approximations for all the
transport coefficients and investigate their computational cost.
We first discuss the use of empirical expressions versus expres-
sions rigorously derived from the kinetic theory for evaluating
transport coefficients. We then perform numerical experiments
illustrating the high convergence rate of the iterative methods
derived in Section 3 for typical gas mixtures. Truncation to a
desired accuracy then yields explicit analytic expressions for
all the transport coefficients. Conjugate gradient methods usu-
ally have a higher convergence rate and should generally be
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preferred. However, as opposed to standard iterative methods,
they do not yield a linear dependency between the iterates and
the system right members, and this dependency is of fundamen-
tal importance in some cases as for instance with the diffusion
matrix. Finaliy, we investigate the computational cost of the
present approximate expressions for the transport coefficients
in multicomponent flow applications.

4.1. Empirical versus Rigorously Derived
Transport Algorithms

Expressions for the transport coefficients that are rigorously
derived from the kinetic theory require us to solve the associated
transport linear system, by using either a direct numerical inver-
sion or an iterative method. In order to compare these ap-
proaches, we evaluate their computational cost. Since transport
property evaluation only depends on the local state of the mix-
ture and, therefore, parallelizes and vectorizes perfectly, it is
sufficient to use an operation count, As usual, we define an
operation to be one multiplication plus one addition. We assume
that the number of species # is large, keeping in mind that this
condition is met in typical multicomponent flow calculations,
where 1 = 10. For simplicity, we assume that p = n so that
the transport linear systems are of size @ = yn withy = 1, 2,
or 3, as indicated in Table I. We will also write ¢(n) = O(¢(n))
in order to indicate that @(r)/¢/(n) is bounded when » is large,

First, it is well known that Gaussian elimination yields the
LU decomposition of a matrix in Cpy; = «*/3 + O(n?) operations
[27]. In the particular case of symmetric positive definite matri-
ces, one can construct in approximately half as many operations
the LDL' decomposition of the systemn matrix or its Cholesky
LL! decomposition in Cipr = @6 + G(n?) operations [27].
Note, however, that this estimate for C\y,/ is only observed in
practice for very large systems or when solving a family of
linear systems with the family indices used in the inner loops.
A typical example for the latter case is provided by the transport
linear systems at each grid node. In the other cases, forming
the LDL' decomposition of the system matrix is computationally
cheaper than forming its LU decomposition, but not by a factor
of two.

Furthermore, the cost of performing m steps of any of
the iterative methods described in Theorems 1-3 is C,y =
m w* + O(n) operations [2]. It is, therefore, expected that
an iterative method will be more cost-effective than a direct
numerical inversion provided that the first few iterations already
yield approximate expressions with a high enough level of
accuracy. These issues will be discussed into more detail in
Sections 4.2 and4.3.

On the other hand, it is important to note that transport
algorithms rigorously derived from the kinetic theory necessar-
ily require at least G(n") operations, since each gas interacts
with all the other gases present in the mixture. Consequently,
it is impossible to obtain approximate expressions rigorously
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derived from the kinetic theory at a cost of €(n) operations.
We still note that it is possible to obtain empirical expressions
at a cost of O(n) operations, and these expressions are usually
referred to as mixture-averaged formulas. Since they are often
considered as an economical alternative for transport property
evaluation in multicomponent fiow calculations, mixture-aver-
aged formulas are also considered in [2]. Widely used approxi-
mations in numerical simulations are discussed and new mix-
ture-averaged formulas are introduced, in particular the average
formulas of order f given by

M) = (2 XA(M)’)”Z @.1)
ey
for t # 0, and for ¢t = 0, by
Mo() = exp(é X, log(m)), (4.2)

where the quantities p,, £ € ¥, denote the transport coetficient
obtained for each pure species [2]. These low-cost expressions
are not as accurate as the analytic expressions rigorously derived
from the kinetic theory, but still constitute an alternative strat-
egy which is not further considered in this paper.

4.2, Accuracy

The numerical experiments presented in this section are per-
formed for a nine species mixture used in hydrogen—air flame
computations and a 26 species mixture used in methane—air
flame computations [29-31}, at temperature T = 1000 K and
pressure p = 1 atm. The chemical system used in the hydrogen—
air flame is composed of the n = 9 species, H,, O,, N, H,0,
H, O, OH, HO,, and H,0,, and is referred to as ‘‘the hydrogen
mixture.”” The chemical system used for the methane—air flame
is composed of the n = 26 species, CH,, CH;, CH,, CH, N,,
H;, 0., H,0, H, O, OH, HO;, H,0,, C.H,, C.H;, CH,, C,H;,
C;H,, C;H, CRO, CH,0, CH;0, CH,CO, CO,, CO, and C;HO,
and is referred to as “‘the methane mixture.”’

We consider three test mixtures referred to as mixtures 1, 2,
and 3. Mixture 1 is an hydrogen mixture with all the mass
fractions set equal to 1/n = 1/9. In mixture 2, the mass fractions
of H;, O,, and N, are set equal to 1/3 — 2g and the remaining
ones set to e = 1E-4. Finally, mixture 3 is a methane mixture
with all the mass fractions set equal to L/n = 1/26.

The transport linear systems are evaluated using approximate
collision integrals [32,33], as detailed in [2]. It is worthwhile
to point out that by using approximate collision integrals, the
linear system coefficients are no longer “‘noble’” constants from
theoretical physics, but merely “‘ordinary”’ numerical parame-
ters. As a consequence, it is necessary to verify that the structure
properties (G1)—(G4) are still valid for the approximate system
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matrix. This has been done systematically in [2] for all the
transport linear systems in the framework of the practical ap-
proximations [32, 33] that are used in this paper.

Finally, all the iterative algorithms considered in this section
have been initialized by taking x; = 0 in Theorems 1-3.

The Shear Viscosiry. We consider the linear system
Ha™ = 3% preconditioned by the matrix db(H ). Conjugate gradi-
ent methods yield the iterates 7! for which the reduced errors

— il
einnJ’TT’”, i=1,2,3,4, (4.3)

are presented in Table 11 for mixtures 1, 2, and 3, The first
iteration vields the analytic expression

A = By Xy HW'
Zises XiXitl (HuH))

@.4)

within 2E-3 accuracy. We remind that the matrix elements H),,
k, ! € ¥, are given in [2] and are omitted for brevity. The new
expression (4.4) for the shear viscosity is more accurate than
the empirical Wilke formula often used in computer calculations
[6, 34], and is also more cost-effective, as further discussed in
Section 4.3.

The Volume Viscosity. We consider the linear system
Ka* = B preconditioned by the matrix diag(K). Conjugate
gradient methods yield the iterates «¥ for which the reduced
eITors

— i
e¥‘=-ﬁ——’K KK |

i=1,2,3,4, (4.5)

are reported in Table LI for the test mixtures. In particular, we
can see that two iterations yield a new analytic expression for
the volume viscosity within 1E-3 accuracy.

The Partial Thermal Conductivity. We consider the linear
system Lot = B preconditioned by the matrix db(L). Conju-

TABLE II
Shear Viscosity

Mixture | Mixture 2 Mixture 3
1 4.60E-4 493E-4 1.68E-3
2 4.50E-7 4,88E-9 1.30E-6
3 1.78E-10 4.27E-13 7.60E-10
4 4. 64E-16 1.34E-14

Note. Reduced errors for various mixtures
with the precoenditioner db(H).

1i1

TABLE 111

Volume Viscosity

Mixture t Mixture 2 Mixture 3
1 1.24E-4 491E-2 1.34E-2
2 1.04E-4 7.41E-6 9.32E-4
3 3.11E-6 3.14E-8 4.80E-5
4 1.69E-8 2.00E-10 8.89E-7

Note. Reduced errors for varions mixtires
with the preconditioner diag(K).

gate gradient methods yield the iterates A" for which the
reduced errors

|A7 — At

=
el PO

i=112734, (4.6)

are reported in Table IV for mixtures 1, 2, and 3. After one
iteration, we obtain the new analytic expression

(BY, db(L)'8"Y
(db(L)™'BY, Ldb(L)"'B")’

"y :12 4
T 4.7)

within 2E-2 accuracy. Recalling that the matrix Zb(L) is formed
by the diagonal of the nine blocks of the matrix L, the vector
db(L)™' 3" is readily evaluated in ©(n) operations by directly
solving » linear symmetric systems of size 2 or 3, as discussed
in [2, 22]. Another expression for the partial thermal conductiv-
ity can be obtained from (4.7) by just replacing the matrix
db(L)™" by diag(L)™*. Finally, we deduce from Table IV that
two conjugate gradient iterations yield an expression for the
partial thermal conductivity with an accuracy below 1E-4.

The Thermal Conductiviry. We consider the linear system
Aco? = B*preconditioned by the matrix db(A). Conjugate gradi-
ent methods yield the iterates A'¥ for which the reduced errors

b A=Al
=1 1
et =150

i=1,2,3,4, (4.8)
TABLE IV

Partial Thermal Conductivity

Mixture 1 Mixture 2 Mixture 3
1 1.22E-2 1.51E-3 9.02E-3
2 7.92E-5 i.85E-6 8.23E-5
3 1.88E-7 1.47E-7 3.23E-7
4 9.98E-9 2.29E-11 6.06E-10

Note. Reduced errors for varions mixtores
with the preconditioner db(L).
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TABLE V

Thermal Conductivity

Mixture | Mixture 2 Mixture 3
1 1.17E-2 1.53E-3 8.78E-3
2 7.25E-5 1.13E-6 8.07E-5
3 5.32E-8 8.97E-11 3.00E-7
4 357E-12 4.36E-14 1.33E-12

Note. Reduced errors for various mixtures
with the preconditioner db{A).

are reported in Table V for mixtures 1, 2, and 3. One iteration
yields the new analytic expression

m=P___ (B.db(A) B
T{db(A)'B", Adb(A)7BY’

(4.9)

within 2E-2 accuracy. Recalling that the matrix db(A) is formed
by the diagonal of the four blocks of the matrix A, the vector
db(A)™'B" is evaluated in G(n) operations by directly solving
# linear symmetric systemns of size | or 2, as discussed in [2,
22]. Another expression for the thermal conductivity can be
obtained from (4.9) by just replacing the matrix db(A}™" by
diag(A)~". Finally, we deduce from Table V that two conjugate
gradient iterations yield an expression for the thermal condue-
tivity with an accuracy below 1E-4,

The Diffusion Matrix.  Only the numerical experiments con-
cerning projected standard iterative methods will be discussed
here. Indeed, the resulting diffusion matrices satisfy the mathe-
matical properties that are important from a thermodynamic
viewpoint, that is, symmetry, mass conservation, and positive
definiteness on the physical hyperplane of zero sum gradients
[2, 13]. On the other hand, conjugate gradient methods can
also be considered for the diffusion matrix, since the iterates
converge in very few iterations [2]. However, these iterates are
not guaranteed to be symmetric nor to be positive definite on
the physical hyperplane of zero sum gradients.

Therefore, we consider projected standard iterations for the
n systems La’t= %, | € &, with the splitting L = M — Z,
where the matrix M is given by

. i .
BT 7, S, rs=0000,j,kE T, 4.10)
M = diag(L®), rs= 0000.

This yields the iterates DI for which the reduced errors

_Ip - DY

Dk

where |[D|» = maxyey |Dy, are reported in Table VI. The
spectral radius of the projected iteration matrix is also included

el i=1,2,34, 4.11)
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TABLE VI

Diffusion Matrix

Mixture 1 Mixture 2 Mixture 3
i 6.06E-2 6.01E-5 2.34E-2
2 1.28E-2 2.57E-5 2.42E-3
3 4.25E-3 4.69E-6 4.34E-4
4 1.73E-3 9.92E-7 8.72E-5
P 3.90E-1 2.07E-1 2.00E-1

Note. Standard iterative methods with M
given by {4.10). Reduced errors and spectral
radius for various mixtures.

in this table. The first iterate yields the matrix D'V within 6E-
2 accuracy. The matrix DI may be expressed as a projected
diagonal matrix
- DU = P diag(D{/ X, ..., DEIX)P, (4.12)
where the coefficients D generalize the ones arising in the
Hirschfelder—Curtiss approximate diffusion velocities [13, 35].
In addition, the projector matrix P has coefficients given by Py,
=8y — Y2y Vi, k, 1 € ¥. Note that, although the mass
fractions should sum up to unity, omitting factors such as
Yiex ¥ may modify Jacobian matrices of discretized governing
equations when all the mass fractions are considered as indepen-
dent unknowns [36]. It is also important to cbserve that no
dense matrix multiplications are needed to form the projected
expressions in (4,12). Therefore, D'is evaluated in G(x%) opera-
tions, although n linear systems are solved.
Two iterations yield the diffusion matrix D2 within 1E-2
accuracy. The matrix D! may be expressed as
DY = PRM'2M — LYM™'Pe (4.13)
where I € R"** is the rectangular mairix formed by the
blocks v = [7, 0, 0]. Since the matrix M consists of nine diagonal
blocks, the product of M~ with a given matrix only requires
0(n?) operations, so that the computational cost of D is still
(n?) operations. Finally, an additional iteration for the n sys-
tems Lae® = B% | € ¥, yields the martrix D™ which is accurate
to 4E-3, but requires G(n*) operations for its evaluation.

The Thermal Diffusion Vector. A new analytic expression
is obtained after two projected standard iterations for the system
La* = B*. The resulting thermal diffusion vector is within a
few percentages of accuracy and may be expressed as

o = —PRM'CM — L)M™'8". (4.14)
Note that (4.14) requires, for its evaluation, the same matrices
as the ones considered for the diffusion matrix D', Therefore,
the thermal diffusion vector 8% and the diffusion matrix D%
can be evaluated simultaneously, as needed, for instance, in
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chemical vapor deposition problems [29]. We can also consider
conjugate gradient methods for the system La* = 8% precondi-
tioned by the matrix db(L). This yields the iterates 6" for which
the reduced errors

ew —_ “9 B 6“1”9"

i=1,2,34,
lll-

(4.15)

where ||8]|. = maxcy |6/, are reported in Table VII for mixtures
1, 2, and 3. Three iterations yield a new approximation for the
thermal diffusion vector, 8, within 5E-3 accuracy.

The Thermal Diffusion Ratios. We consider the linear sys-
tem Ao’ = B preconditioned by the matrix 4b{A). Conjugate
gradient methods yield the iterates y!! for which the reduced
errors

[il = HX — Xm““

] i = 19 2) 31 49
S 7

(4.16)

are reported in Table VIIL Three iterations yield a new approxi-
mate expression for the thermal diffusion ratios, ¥, within
4E-4 accuracy.

4.3. Computational Cost

In the previous section we have examined the accuracy of
the approximate expressions derived for all the transport coef-
ficients by truncating convergent iterative methods. One to three
iterations have generally yielded analytic expressions for the
transport coefficients with an accuracy between 1E-3 and 1E-
2. Indeed, for the shear viscosity, the volume viscosity, the
partial thermal conductivity, and the thermal conductivity, the
first conjugate gradient iterate already yielded excellent accu-
racy. For the diffusion matrix, the thermal diffusion vector, and
the thermal diffusion ratios, two or three iterations were needed,
using either conjugate gradient or standard iterative methods.
Note that more accurale expressions are not appropriate since
the transport linear systems are derived by keeping only the
first terms in the polynomial expansions of the species perturbed
distribution functions.

The next issue that needs to be addressed is the computational
cost of the present transport algorithms in practical implementa-

TABLE VII

Thermal Diffusion Vector

Mixture | Mixture 2 Mixture 3
1 2.61E-t 5.81E-1 1.66E-1
2 2.62E-2 9.85E-3 0.97E-3
3 2.38E-3 5.10E-3 1.53E-3
4 4.19E-4 6.81E-5 1.47E-4

Note. Reduced errors for various mixtures
with the preconditioner Jb(L).
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TABLE VIII

Thermal Diffusion Ratios

Mixture 1 Mixture 2 Mixture 3
1 9.35E-2 6.12E-3 5.51E-2
2 5.10E-3 5.45E-4 7.86E-3
3 7.52E-5 2.95E-6 4.17E-4
4 3.05E-7 8.79E-8 2.73E-7

Note. Reduced errors for vartous mixtures
with the preconditioner dh(A).

tions of multicomponent flow models. Therefore, we now com-
pare direct numerical inversions versus iterative methods in the
framework of a two-dimensional methane—air diffusion flame
model [37]. We first restate that transport property evaluation
only depends on the local state of the mixture, Optimal vectori-
zation of transport property evaluation thus requires multiple
input data subroutines that compute simultaneously transport
properties over a wide number of grid nodes [38]. This approach
has been implemented for instance in [29-31, 37] for various
combustion problems. Vectorization is hence straightforward
for the iterative algorithms as well as for the LDL' and LLS
decompositions. For the LU decomposition, however, difficul-
ties arise with the pivoting part of the algorithm. On the other
hand, parallel optimization of transport property evaluation de-
pends on the problem granularity [38]. For coarse-granularity
parallel computations in which each processor is responsible
for a different portion of the computational domain, multiple
input data subroutines are preferable [38]. For fine-grained
distributed parallel architectures, simple input data subroutines
that only consider one state of the mixture must be used. In
this paper only single input data subroutines will be investi-
gated. The implementation of multiple input data subroutines
is in progress and goes beyond the scope of this paper.

We now investigate the computational efficiency of iterative
algorithms versus direct numerical inversiens for a two-dimen-
sional methane-air diffusion flame model involving 16 chemi-
cal species and N = 7.5 X 10° mesh nodes [37]. For this
problem, all the transport coefficients have been evaluated by
using direct numerical inversion and also by truncating an
iterative method. Apart from the diffusion matrix for which
projected standard iterative methods were used, the conjugate
gradient method has been considered for all the other transport
coefficients. Based on the results of Section 4.2, we have evalu-
ated the approximate expressions ni'l, &'l DEL A'PL B ALY
and »°. Note that in applications where thermal diffusion is not
included, it may be more efficient to evaluate the approximate
thermal conductivity A"l or the partial thermal conductivity A’
since these expressions already yield excellent accuracy.

The computations for the single input data subroutines were
carried out on an IBM Risc System 6000 (model 560) worksta-
tion and on a CRAY C98 computer in scalar mode. The numeri-
cal results are reported in Tables 1X and X, respectively. In
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TABLE IX

Comparison of Iterative Methods versus Direct Numerical Inversion
for Transport Property Evaluation Applied to a Two-Dimensional
Flame Problem

Coefficient oy wl ABI, Y AR, o iRt AL
Accuracy  3.56E-3  4.76E-3  S8SE-9 () 1.09E-7 (A) —
231E-4 (y)  L.14E-3 (0)
8.83E-4 (1)
Sw 6.21 133 4.28 3.99 453
Sior 5.35 10.8 3.47 377 4.19
Sty 114 1.61 1.33 220 2.12
Siny 112 149 1.25 2.12 201

Note. Results obtained on the IBM workstation using single input data sub-
routines.

Table IX, the first line contains the relative error for the transport
coefficient obtained by truncation averaged over the number
of nodes. For instance, for the shear viscosity, we have reported

N ‘nv_n[UIIZ 112
e":(; , ) '

where 7, and " denote the shear viscosity at node » obtained
with direct numerical inversion and with one conjugate gradient
iteration, respectively. As illustrated in Table IX, excellent
accuracy is obtained for all the transport coefficients.

The last four lines in Tables IX and X indicate the speedups
obtained when using an iterative method rather than a direct
numerical inversion. Direct numerical inversion was performed
by forming either the LU or the LDL' decomposition of the
system matrix. For very large linear systems or when using
multiple input data subroutines, the latter method requires ap-
proximately half the computational cost of the former. For the
present linear systems the differences observed between both
methods are not as large, but in all cases the LDL' decomposi-
tion is computationally cheaper. The evaluation of the transport
linear systemn is not included in the CPU times when computing
the speedups Siy and Sipy, but it is in the speedups S|y and

(4.17)

TABLE X

Comparison of lterative Methods versus Direct Numerical Inversion
for Transport Property Evaluation Applied to a Two-Dimensional
Flame Problem

Coefficient 7" ki ABL 4B ABL gl p All
S 5.50 [3.8 432 4.19 4.86
Stow 3.76 9.53 2.91 3.57 397
Sy 1.37 2.80 1.74 2.85 3.01
Siov 23 2,20 1.43 249 2,55

Note. Results obtained on the CRAY C98 computer in scalar mede using
single input data subroutines.

ERN AND GIOVANGIGLI

TABLE XI

Comparison of Various Strategies for Evaluating the
Shear Viscosity

Coefficient ) Sy g el Wilke
Accuracy 0 3.29E-3 3.56E-3 6.08E-3 8.20E-3
Speedup 1.00 1.60 112 1.92 0.71

Note. The accuracies and the speedups are evaluated with respect to 7.

Sim. When the evaluation of the transport linear system is not
included, the speedups range between 2.91 and 13.8. When it
is included, speedups between 1.12 and 3.01 are obtained. It
is also interesting to note that speedups obtained on the CRAY
(98 are generally higher than on the IBM Risc System 6600.

In the last column of Tables TX and X, we have evaluated
the transport coefficients ', &, DB AP, and 6. This choice
is motivated by the fact that in most multicomponent flow
applications, all the transport coefficients are needed. In this
case, several collision integrals need to be evaluated only once
and can be subsequently used in various transport linear sys-
temns, thereby reducing the computational cost of the system
evaluation. As indicated in Tables [X and X for the present
multidimensional flame problem, iterative methods yield an
overall speedup of a factor of three with respect to direct numeri-
cal inversions. This, in turn, may result in significant savings in
the total time needed to solve multidimensional flow problems.

Since the evaluation of the transport linear system accounts
for a significant amount of the CPU time required to implement
the iterative algorithms, it is interesting to consider some simpli-
fications in the modeling of collision integrals. This would
indeed yield transport linear systems that can be evaluated faster
and thus more cost-effective transport algorithms. Consider, for
instance, the shear viscosity 7. As discussed in [2], the associ-
ated transport linear systemn may be expressed in terms of a
ratio of collision integrals, denoted by Au, k, 1 € . In the
previous numerical experiments, this quantity was evaluated
as a function of the logarithm of a reduced temperature [2].
This has vielded, after one conjugate gradient iteration, the
approximation 7. An interesting simplification in the transport

TABLE XII

Reduced Transport Linear Systems

System Size Constraint Evajuation
Kanettin = Bfan P — Koy = (fkiBHv Bfg)u)
Dl A D
L[e]a[i]): BIe]D 2n (s ﬂ[e;) =0 Dyeyr = (Q[g'is Bm’%
L[wl‘?‘fgo‘m = B n {Ergon ) = 0 Digopr = @[oﬁhﬁ[n':)])
Lt = B 2n {F, iy = 0 Al = (E/Tch.t]bBﬁu)
— A [}
Blc]k - ﬁ(_(XIE]!B[c])
Apedy = Bly n — A = (P/T N, Biay)
X = (L oy
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linear system is obtained with the approximation Ay = 1.1,k
I € J. A direct numerical inversion of this approximate system
yields a shear viscosity coefficient denoted by 1,,. Similarly,
one conjugate gradient iteration for this simpler system yields
a new approximation, 7. In Table XI we have considered
these various strategies for evaluating the shear viscosity. We
have computed 7, 7. 7", 7k, and also the shear viscosity
resulting from the Wilke approximation. The quantities 7 and
Tpp have been computed by forming the LDL' decomposition
of the systemn matrix. As illustrated in Table XI, the new approx-
tmation 7}, is within 6E-3 accuracy of 7 and can be evaluated
almost three times faster than the Wilke approximation. We
can also see that ' is twice as accurate as the Wilke approxima-
tion and is also computationally more effective. Finally, we
point out that similar simplifications for collision integrals yield
accurate approximations for the volume viscosity and the diffu-
sion matrix, but not for thermal diffusion and thermal conduc-
tion transport coefficients.

5. CONCLUSION

The general theory of iterative methods for multicomponent
transport algorithms [2] has been used systematically in order
to obtain new, rigorously derived, approximate expressions for
all the transport coefticients of dilute potyatomic gas mixtures.
For each transport coefficient, approximate expressions have
been discussed from a practical viewpoint by considering the
trade-off between computational cost and accuracy. One to
three conjugate gradient iterations generally yield excellent
accuracy at a moderate computational cost. Projected standard
iterative methods are preferable for the diffusion matrix and,
in some cases, for the thermal diffusion vector also. The high
convergence rates observed in all cases indicate that iterative
methods constitute an appealing alternative to direct inversions
in multicomponent flow calculations and a very general, rigor-
ous, and efficient technique for multicomponent transport prop-
erty evaluation.

APPENDIX A: REPDUCED TRANSPORT LINEAR SYSTEMS

In this appendix we briefly discuss the use of reduced trans-
port linear systems for multicomponent transport evaluation.
These reduced systems are obtained by using smaller variational
spaces which reduces the size of the resulting linear systems and
hence simplifies the transport algorithms. The reduced systems
yield new transport coefficients which are generally within 1E-
3 to 5E-2 accuracy of the transport coefficients obtained with
the standard systems [2, 22]. However, since the simplified
systems are of smaller size, they constitute in some cases a
computationally interesting alternative to the standard systems.

In this paper, the transport coefficients corresponding to the
largest variational space sf* have been denoted by w, and the
ones associated with a reduced variational space will then be
denoted by gy, where X stands for a simple symbol associated
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with the reduced variational space. The reduced transport coef-
ficients introduced in [2, 22] are:

1. The volume viscosily k) associated with a linear system
of size p instead of n + p;

2. The first-order diffusion matrix Dy associated with a
linear system of size n, instead of 2n + p;

3. The partial thermal conductivity A}, the thermal diffusion
vector #,, and the diffusion matrix D, associated with a linear
system of size 2n instead of 2n + p;

4, The thermal conductivity Ay and the thermal diffusion
ratios i associated with a linear system of size n, instead of
n+ p.

The linear systems associated with these reduced transport coef-
ficients are summarized in Table XII.

It is interesting to note that the volume viscosity kg can be
evaluated explicitly in the framework of practical approxima-
tions for collision integrals [2, 32, 33]. Furthermore, the thermal
conductivity Ay, and the partial thermal conductivity Aj,; are
generally very accurate [2, 22]. Finally, we point out that itera-
tive methods yield approximate expressions for all the reduced
transport coefficients in the same form as those presented in
Section 4. These expressions are given in [2, 22] and are omitted
for brevity.
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